Social Network of Co-occurrence in News Articles

نویسندگان

  • Arzucan Özgür
  • Haluk Bingol
چکیده

Networks describe various complex natural systems including social systems. Recent studies have shown that these networks share some common properties. While studying complex systems, data collection phase is difficult for social networks compared to other networks such as the WWW, Internet, protein or linguistic networks. Many interesting social networks such as movie actors’ collaboration, scientific collaboration and sexual contacts have been studied in the literature. It has been shown that they have small-world and power-law degree distribution properties. In this paper, we investigate an interesting social network of co-occurrence in news articles with respect to small-world and power-law degree distribution properties. 3000 news articles selected from Reuters-21578 corpus, which consists of news articles that appeared in the Reuters newswire in 1987 are used as the data set. Results reveal that like the previously studied social networks the social network of co-occurrence in news articles also possesses the small-world and power-law degree distribution properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analysis of co-citation and word co-occurrence networks of Iranian articles in the field of dentistry

Background and Aims: Dentistry is an important profession ensuring the health of body and soul, and has a special place in the scientific productions of medical disciplines. The purpose of this study was to analyze the co-citation and word co-occurrence of Iranian research papers in the field of dentistry based on indexed documents in Web of Science from 2014 to 2018. Materials and Methods:...

متن کامل

Visualizing Multiple System Atrophy Studies Based on Collaboration Network and Centrality Indices in Web of Science Database

Introduction: Social network analysis is an analytical method based on graph theories that identifies relationships between individuals or factors to analyze the social structures resulted from those relationships. The objective of this study was to analyze co-authorship and co-word networks based on scientometric indicators and centrality measures in the studies on multiple atrophy system dise...

متن کامل

Visualizing Multiple System Atrophy Studies Based on Collaboration Network and Centrality Indices in Web of Science Database

Introduction: Social network analysis is an analytical method based on graph theories that identifies relationships between individuals or factors to analyze the social structures resulted from those relationships. The objective of this study was to analyze co-authorship and co-word networks based on scientometric indicators and centrality measures in the studies on multiple atrophy system dise...

متن کامل

Mapping the Scientific Structure of Iranian Brucellosis Researches Using the Co-authorship and Co-occurrence Network Analysis

Background and Objective: The evaluation of the publishing trend of articles in various scientific fields provides an insight into the efforts of researchers in the field of knowledge. Accordingly, the present study has evaluated and analyzed the scientific publications on brucellosis conducted by Iranian researchers using scientometrics methods and analysis of social networks. Methods: The pr...

متن کامل

Detection of Characteristic Co-Occurrence Words from News Articles on the Web

A large number of news articles are published on the Web every day, and demand of discovering news articles on new/important topics has been growing. In this paper, we present a method for detecting characteristic words co-occurring with a target word (characteristic co-occurrence words) to help users find important topics related to the target word. The method divides news articles published i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004